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The objective of this study was to explore the potential of near-infrared reflectance (NIR)

spectroscopy to determine individual seed composition in common bean (Phaseolus vulgaris L.).

NIR spectra and analytical measurements of seed weight, protein, and starch were collected from

267 individual bean seeds representing 91 diverse genotypes. Partial least-squares (PLS) regres-

sion models were developed with 61 bean accessions randomly assigned to a calibration data set

and 30 accessions assigned to an external validation set. Protein gave the most accurate PLS

regression, with the external validation set having a standard error of prediction (SEP) = 1.6%. PLS

regressions for seed weight and starch had sufficient accuracy for seed sorting applications, with

SEP = 41.2 mg and 4.9%, respectively. Seed color had a clear effect on the NIR spectra, with black

beans having a distinct spectral type. Seed coat color did not impact the accuracy of PLS

predictions. This research demonstrates that NIR is a promising technique for simultaneous sorting

of multiple seed traits in single bean seeds with no sample preparation.
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INTRODUCTION

Common beans are a good source of protein, starch, and fiber
aswell asmineral nutrients for a large segment of theworld.There
is a coordinated “phaseomics” effort to improve bean yield aswell
as seed quality and composition (1, 2). Bean seed composition is
influenced by environmental factors but also has a strong genetic
component (3-5). Consequently, seed nutritional quality traits
are targets for improvement through breeding. Bean seed com-
position is currently measured with destructive analytical techni-
ques that require a bulk sample of seeds (3-7). Efforts to improve
seed composition would be aided with nondestructive technolo-
gies that allow breeders to select composition variants at a single-
seed level.

Near-infrared reflectance (NIR) and transmittance (NIT)
spectroscopy have been widely adopted for low-cost, nondestruc-
tive analysis of fruits, vegetables, and grains (8, 9). Biological
materials have multiple overlapping near-infrared absorption
bands that are due to overtone and combination vibrations of
C-H, N-H, O-H, and S-H functional groups (10). The
complexity of organic constituents in foods and biological mate-
rials leads to broad NIR or NIT absorbance peaks, and multi-
variate regression approaches, also known as chemometrics, are
required to calibrate near-infrared spectra to chemical composi-
tion (8). Predictions using NIR calibrations are highly reprodu-
cible and can approach the accuracy of reference analytical tests
for individual constituents (11). The major advantages of NIR

analysis are its low-cost, nondestructive nature, and ability to
predict multiple constituent and quality traits simultaneously.
However, the absorbance interactions between chemical consti-
tuents within complex samples necessitate calibration develop-
ment for different crops and sample preparations.

NIR calibrations have been developed for the major bean seed
storage molecules using fine ground powders (12). Sample grind-
ing requires the seeds to be destroyed prior toNIRdata collection
and limits the applicability of NIR to breeding and other seed-
sorting applications. Single-seed NIR data can be used to predict
individual seed composition in both oil seeds and small
grains (13-18). Single-seed NIR has been more challenging for
plants with larger seed sizes (19-22). A key technical advance for
predicting the composition of larger seeds, such as maize or
soybeans, has been the development of spectral acquisition
systems that allow NIR data to be collected from the whole
surface of the seed (23, 24).

The spectral acquisition system developed by Armstrong (23)
has recently been shown to predict multiple maize kernel traits,
including starch, protein, oil, and seed weight (25). This seed
analyzer collects a spectrum as a seed falls through an illuminated
glass tube and uses a relatively inexpensive InGaAs diode array
spectrometer. It has the capacity to collectNIR spectra at a rate of
10 seeds per second, which would allow for high-throughput seed
sorting. The objective of this study was to determine whether the
seed analyzer could be applied to other cropswith large seed sizes.
Common beans are an important part of the human diet in
developing countries, but the crop has not been a historic focus of
nutritional improvement breeding efforts (1). Armstrong’s (23)
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glass-tube seed analyzer is an attractive analytical tool for
common beans because of its low cost and high-throughput
capacity.

MATERIALS AND METHODS

Seed Samples for Calibration. A total of 91 diverse germplasm
accessions of common bean (Phaseolus vulgaris L.) were obtained from
the United States Department of Agriculture (USDA) National Plant
Germplasm System. These accessions were selected on the basis of
diverse geographic locations of original collection in an effort to sample
a broad range of bean seed composition. Each accession was propagated
at the USDA-Agricultural Research Service (ARS) Western Regional
Plant Introduction Station (WRPIS) (Pullman, WA) in greenhouses
with defined soil media and fertilization regimes. The seeds were stored
in defined humidity and temperature seed rooms prior to distribution
(Welsh, personal communication). Three seeds were sampled from
each accession to provide biological and analytical replicates for
each accession for a total of 273 seeds. The limited sampling of each
accession allowed for a larger diversity of germplasm to be included in the
study.

SeedWeight andNIRData Collection. Individual seed weights and
NIR spectra were recorded with a custom seed analyzer as described
(23, 25). Briefly, seed weights were recorded with a microbalance consist-
ing of aMK4microbalance head and a Stabal control unit (CI Electronics,
Salisbury, U.K.). A single NIR spectrum was recorded at 1 nm intervals
between 907 and 1689 nm with an InGaAs array-based spectrometer
(NIR-256-1.7T1, Control Development, South Bend, IN) as each bean fell
through a glass tube illuminated by multiple halogen lamps. A dark
background and a reference Spectralon (Labsphere, North Sutton, NH)
spectrum were measured prior to recording spectra. Individual spectra

Figure 1. Examples of NIR spectra from single bean seeds. Each line represents the average of three NIR spectra from a single seed. The analytically
determined values for seed weight, protein, and starch are given. (A) Comparison of two genotypes with similar weight and composition but different seed
color. (B) Comparison of two genotypes with similar seed weight and color but different relative amounts of protein and starch. (C) Comparison of two
genotypes with similar composition and seed color but different seed weights. The Othello and Frijol negra de milpa accessions are variegated for seed color.
The seeds were scored according to the darker color sectors.

Table 1. Seed Composition Statistics of Beans in the Calibration and
Validation Sets

calibration set (n = 178) validation set (n = 89)

trait mean SD range mean SD range

seed weight (mg) 272.6 88.8 114.0-515.2 237.7 76.1 80.1-477.5

protein (%) 24.9 3.8 15-34.7 24.5 3.9 14.8-35

starch (%) 43.2 6.3 18.9-60.7 41.7 7.3 15.6-51.4
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were recorded with a 40 ms integration time, and absorbance values were
calculated as log(1/R). A custom Microsoft Visual Basic 6.0 program
centered each spectrum to an arbitrary mean of 1. Three replicate seed
weights and NIR spectra were collected for each seed, and the average of
the data were used for partial least-squares (PLS) regression.

Protein and Starch Analysis. The individual bean seeds were
transferred to 2 mL tubes with two steel beads (7.9 mm) and ground for
5 min with a MiniBeadBeater-96 (BioSpec Products, Bartlesville, OK).
Total protein (N� 6.25) was measured indirectly from totalN concentra-
tion with a CN analyzer (Carlo Erba-NCS 2500, CE Instruments, Milan,
Italy). Approximately 10 mg of dried bean flour (70 �C for 72 h) was used
for each analysis. The total starch was determined by an enzymatic
hydrolysis with thermostable R-amylase and amylogucosidase followed
by a colorimetric determination of glucose with a glucose oxida-
se-peroxidase (GOP) system (26), as described by Spielbauer et al. (25).

Statistical Analysis. PLS regression was performed using JMP 8
(SAS Institute, Inc., Cary,NC). Prior to regression, six seedswere removed
from the data set because of indexing errors within the weight and spectra
replicates. These six seeds had either one weight replicate that was an
obvious outlier based on the standard deviation of repeatability of the
microbalance or an obvious outlier spectrum in the three replicates. PLS
regressions were evaluated using leave-one-out cross-validation, and an
optimal model was selected using default software settings. A subset of the
data was partitioned for external validation. Multiple methods of parti-
tioning the calibration and validation data sets were assessed including: (a)
randomly assigning 30 bean accessions to the validation set, (b) randomly
assigning 89 seeds to the validation set, and (c) sorting the analytical data
and selecting every third sample for the validation set. The data were also
partitioned on the basis of the black seed color, and separate PLS models
were developed for black seeds and all other seeds with colors scored as
brown, purple, red, green, and white. Variegated striped and pinto beans
were scored according to the darkest color on the seed. In addition,
spectral pretreatments were evaluated. First and second derivatives were
calculated as given by Spielbauer et al. (25); multiplicative scatter correc-
tion (MSC) was calculated as described by Geladi et al. (27); and the
standard normal variate (SNV) transformation was applied. Principal
components analysis (PCA) of the spectra was completed with SAS 9.2
(SAS Institute, Inc., Cary, NC) using PROC PRINCOMP.

RESULTS AND DISCUSSION

Table 1 shows the range of seed composition for the bean
accessions in this study. The calibration and external validation
sets were partitioned according to bean accessions with 61 and 30
accessions within the calibration and validation sets, respectively.
These data sets have comparable ranges, means, and standard
deviations for all traits measured, indicating that the validation
set is expected to report the quality of the PLS calibrations. The
protein and starch levels showed a slightly larger range than the
bean accessions used for a ground sample calibration (12). Thus,
the bean accessions in this study are expected to provide a
comparable range of composition to the NIR calibration with
ground samples and to provide an accurate evaluation of the
glass-tube NIR acquisition system.

Figure 1 shows examples of contrasting pairs of individual bean
spectra. We noted that black bean varieties had a distinct region
of absorbance between approximately 910 and 1100 nm that was
not found in beans with other colors. Figure 1A shows this
spectral difference between two beans that have approximately
the same composition and seed weight. The high absorbance was
found in most black beans and can be visualized with a scatter
plot of principal component 1 versus 2 from a PCA of the NIR
spectra (Figure 2). Black beans are rich in antioxidant phenolic
compounds, especially anthocyanins (28,29). Potentially, antho-
cyanins or other derivative secondary metabolites cause the
spectral difference.Maize kernels also produce anthocyanins that
contribute to kernel color, but we have not noticed similar
absorbance differences in the 910-1100 nm range based onmaize
kernel color (Settles, unpublished results).

The bean spectra also show overall differences when protein
and starch composition or seed weight varies. For these compar-
isons, spectrawere selected frombeanswith similar seed color and
weight to illustrate the effects of seed composition (Figure 1B),
while spectra were selected with similar seed color and composi-
tion to illustrate the effects of seedweight (Figure 1C). Prior work
with maize kernels indicates that single-seed NIR spectra can
be calibrated to both seed composition and individual weight
(19, 25). We evaluated PLS regressions for seed weight, percent
protein, and percent starch.

Table 2 shows the PLS regression statistics for percent protein
calibrations developed from the data sets given in Table 1. The
regressions were assessed by comparing the coefficient ofmultiple
determination (R2) and the standard error of calibration (SEC) of
the calibration data set to the r2 and standard error of prediction
(SEP) in the external validation set. A variety of spectral
pretreatments were evaluated including first derivative (1 Der),
second derivative (2 Der), MSC, and SNV as well as combina-
tions.With the exception of the external validation set for the first
derivative pretreatment, all of the calibrations in Table 2 showed
similar R2 and r2 values and similar SEC and SEP values,
suggesting that the leave-one-out cross-validation fit the PLS
regressions accurately. The PLS regression statistics for the
external validation data using a first derivative pretreatment
suggested that this model may be more accurate. However, the
calibration statistics for the first derivative model were similar to
all othermodels, andwe interpret the external validation statistics
to be anomalous and likely not to be a robust indicator of
performance on future samples. Similar results were obtained
for spectral pretreatments for seedweight and starch (not shown).
We conclude from these results that spectral pretreatments in

Figure 2. Scatter plot of principal components 1 and 2 of the average bean
spectra. Filled circles are seeds with a black seed color, and open circles
are beans of all other colors (white, brown, red, green, and purple).

Table 2. PLS Regression Statistics for Protein (%) Using Multiple Spectral
Pretreatments

calibration validation

data pretreatment PLS factors R2 SEC r2 SEP SD/SEP

none 12 0.84 1.5 0.82 1.6 2.4

MSC 11 0.83 1.6 0.81 1.7 2.3

SNV 11 0.83 1.5 0.80 1.8 2.2

1 Der 8 0.80 1.7 0.88 1.4 2.9

1 Der and MSC 8 0.81 1.6 0.82 1.7 2.3

1 Der and SNV 7 0.79 1.7 0.83 1.7 2.4

2 Der 7 0.78 1.8 0.82 1.7 2.3

2 Der and MSC 6 0.79 1.7 0.81 1.7 2.3

2 Der and SNV 5 0.77 1.8 0.82 1.7 2.4
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addition to mean centering did not markedly improve the
accuracy of the PLS regressions.

Table 3 reports the PLS regressions for seed weight, protein,
and starch calculated from mean-centered spectra. Scatter plots
of the analytical and NIR-predicted values for the external
validation set indicate that the models have relatively little bias
and a similar level of error across the full range of analytical
values (Figure 3). The protein calibration gave the best statistics
for both calibration and prediction. The standard deviation (SD)/
SEP ratio for this regression suggests that this model can be used
to predict protein levels (30). The seed weight and starch predic-
tions had lower SD/SEP ratios, suggesting that these calibrations
can be used to group seeds according to high and low values for

the traits. To assess the repeatability of the NIR measurements,
we predicted seedweight, protein, and starch for the single spectra
from the three spectral replicates for each bean in the external
validation set. The standard deviations of repeatability for the
single spectra predictions were 44 mg for seed weight, 1.4% for
protein, and 1.8% for starch. We then compared the SEC and
SEP of these PLS models to the SEC and SEP reported for NIR
predictions with ground bean samples (12). For both protein and
starch, the individual seed predictions have approximately 3-4-
fold greater error. These statistics suggest that much of the
prediction error is due to the high-throughput nature of the
single-seed NIR data collection. Alternatively, it is possible that
the particular random assignment of 61 accessions to the calibra-
tion set and 30 accessions to the external validation set led to a
suboptimal PLS model.

We evaluated the stability of the PLS regression using three
additional methods for partitioning the bean data. First, we
randomly assigned individual bean seeds instead of bean acces-
sions to the calibration (178 seeds) and validation (89 seeds) sets.
We completed three random assignments and calculated the SEC
and SEP for these PLS regressions (Table 4). Randomassignment
of seeds resulted in regressions with a similar range of prediction
error to the models given in Table 3. In addition, we ordered the
bean analytical data and assigned every third value to the external
validation set to ensure that the calibration and external valida-
tion sets had nearly identical ranges of analytical values. For these
regressions, the SECand SEPwere also in the same range as given
in Tables 3 and 4 (SEC = 33.2 mg, 1.6%, and 4.2% and SEP=
34.2 mg, 1.9%, and 5.1% for weight, protein, and starch,
respectively). These results suggest that the PLSmodels inTable 3
and Figure 3 are representative.

It is possible that the large differences between NIR spectra
from black beans and other bean colors may have a confounding
effect on PLS regression. We partitioned the bean data to test for
effects because of seed color. Table 5 shows SEC and SEP values
for PLS regressions based on seed color. These models showed
reduced SEC but similar SEP, suggesting that the 910-1100 nm
absorbance within black bean seeds does not contribute to a
confounding effect on the NIR predictions.

This study demonstrates that single-seed NIR spectra can be
used to sort bean seeds according to individual weight and the
major nutritional constituents of the seed. A generalized PLS
regression can be developed for common beans, even though
black beans have a distinctNIR absorbance from900 to 1100 nm.
Although the accuracy of single-seed NIR is not as good as with

Table 3. PLS Regression Statistics with No Spectral Pretreatments

calibration validation

trait PLS factors R2 SEC r2 SEP SD/SEP

seed weight (mg) 10 0.85 34.5 0.74 41.2 1.9

protein (%) 12 0.84 1.5 0.82 1.6 2.4

starch (%) 9 0.51 4.4 0.56 4.9 1.5

Figure 3. Scatter plots of the NIR-predicted and analytical reference
values for (A) seed weight, (B) protein, and (C) starch. Each plot shows
the values for the external validation set and a linear regression trend line.
All NIR-predicted values used the PLS regressions given in Table 2.

Table 4. Range of PLS Regression Prediction Error with Three Random
Partitions of the Bean Data

calibration (SEC) validation (SEP)

trait Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3

seed weight (mg) 35.4 29.4 36.2 38.9 49.5 32.1

protein (%) 1.5 1.4 1.5 1.8 1.8 1.4

starch (%) 4.4 4.4 4.4 4.5 4.1 4.2

Table 5. PLS Regression Prediction Error When the Bean Data Are Parti-
tioned on the Basis of the Seed Color

calibration (SEC) validation (SEP)

trait

black seeds

(n = 71)

other colors

(n = 116)

black seeds

(n = 20)

other colors

(n = 60)

seed weight (mg) 24.1 27.8 31.5 44.4

protein (%) 1.6 1.1 1.9 1.7

starch (%) 3.4 4.2 6.8 5.5
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fine-ground samples, there are significant advantages in avoiding
grinding. Individual seeds require no sample preparation, and the
spectra can be acquired at high throughput. The intact seeds are
viable after NIR predictions, which would allow breeders to
simultaneously enrich for improved composition along with
acceptable seed size. It is important to note that common beans
have a diverse range of protein and starch composition. Beans are
commonly thought to be a “high-protein” food, but a significant
number of bean varieties have similar protein and starch levels to
maize. Incorporating a NIR step in bean breeding selections
would enable more efficient crop improvement, particularly in
maintaining high-protein levels while selecting for high yield and
disease resistance.
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